Regional ionospheric modeling using wavelet network model
نویسنده
چکیده
A major error component of Global Positioning System (GPS) is the ionospheric delay. Ionopspheric error can be reduced by a dual frequency receiver using a linear combination technique that can not be applied with a single frequecy receiver. However, an accurate ionospheric error modeling for single-frequency receiver is required. Due to the nonlinearity of the ionospheric error, a highly nonlinear wavelet network (WN) method is proposed in this paper. The main objective of the paper is to develop a short-term prediction model based on a short dataset. Therefore, five GPS stations with five days of ionospheric datasets along with time and location were employed to develop the proposed WN-based ionospheric model. Four days of datasets were employed to develop the model and one day of dataset was employed to test the prediction accuracy. To validate the WN-based ionospheric model, a comparison was made between the developed WN-based ionospheric model and the CODE, JPL and IGS Global Ionospheric Map (GIM) models. It is shown that the Root-Mean-Squared (RMS) errors of the developed WNbased ionospheric model are 2.51 TECU, 2.75 TECU and 2.50 TECU (Total Electronic Content Unit) with percentage errors of about 3.4%, 3.8% and 3.4% when compared with the CODE, JPL and IGS GIM models.
منابع مشابه
Combining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement
The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...
متن کاملIranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps
Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...
متن کاملApplication of Wavelet Neural Networks for Improving of Ionospheric Tomography Reconstruction over Iran
In this paper, a new method of ionospheric tomography is developed and evaluated based on the neural networks (NN). This new method is named ITNN. In this method, wavelet neural network (WNN) with particle swarm optimization (PSO) training algorithm is used to solve some of the ionospheric tomography problems. The results of ITNN method are compared with the residual minimization training neura...
متن کاملDetection and Modeling of Medium-Scale Travelling Ionospheric Disturbances in Iran Region
Ionosphere layer variations are divided into regular and irregular. Regular changes can be considered as daily changes, changes depending on latitude and changes due to solar activity. Travelling Ionospheric Disturbances (TID) is one of the irregular changes of ionosphere which categorized in small, medium and large scales. Medium-scale Travelling Ionospheric Disturbance (MSTID) which are propa...
متن کاملA combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations
Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...
متن کامل